Different calcium sources are narrowly tuned to the induction of different forms of LTP.
نویسندگان
چکیده
The essential role of calcium in the induction of long-term potentiation (LTP) has been well established. In particular, calcium influx via the N-methyl-D-aspartate (NMDA) receptor (NMDAR) is important for LTP induction in many pathways. However, the specific roles of other calcium sources in hippocampal LTP are less clear. The aim of the present study was to determine the appropriate conditions and extent to which non-NMDAR Ca(2+) sources contribute to the induction of different forms of LTP in area CA1 of hippocampal slices. Increasing numbers of theta-burst trains (1, 4, and 8 TBS) induced LTP of increasing magnitude and persistence. Inhibition of ryanodine receptors caused inhibition of weak LTP induced by 1 TBS, but had no effect on more robust forms of LTP. Inhibition of IP3 receptors inhibited moderate LTP induced by 4 TBS, but had no effect when 1 TBS or 8 TBS were used. Inhibition of L-type voltage-dependent Ca(2+) channels inhibited strong LTP induced by 8 TBS, but had no effect on weaker forms of LTP. These results show that different Ca(2+) sources have different thresholds for activation by TBS trains. Furthermore, each Ca(2+) source appears to be tuned to the induction of a different form of LTP. Such tuning could reflect an important link between different LTP induction and maintenance mechanisms.
منابع مشابه
P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملThe effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملThe effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملThe effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices
The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2002